### Project ID # VAN037



# Vehicle Manufacturer's Suggested Retail Price (MSRP) Estimation using Machine Learning



Ayman Moawad, Ehsan Islam, Namdoo Kim, Ram Vijayagopal, Aymeric Rousseau **Argonne National Laboratory** 

**2020 DOE Vehicle Technologies Office Annual Merit Review** 

June 2020

### **PROJECT OVERVIEW**

| Timeline                                                                                                                 | Barriers*                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Project start date: 04/01/2019</li> <li>Project end date: 03/30/2020</li> <li>Percent complete: 100%</li> </ul> | <ul> <li>Constant advances in technology.</li> <li>Cost.</li> <li>Computational models, design, and simulation methodologies.</li> </ul> |
|                                                                                                                          | *from 2011-2015 VTP MYPP                                                                                                                 |
| Budget                                                                                                                   | Partners                                                                                                                                 |
| FY20 Funding: \$150K                                                                                                     | University of Chicago                                                                                                                    |

### **OBJECTIVES**

### Update vehicle and component costs to improve Benefit Analysis

### Background

- Argonne has been supporting DOE VTO to estimate the impact of new technologies on energy consumption and cost.
- Component cost estimates outdated (2010).
- Common cost estimation methods (essentially based on Bill of Materials and teardown methodologies) are lengthy and expensive.
- => New methodology needed to estimate individual technology cost.

### Methodology

- Use a top-down approach: Leverage Machine Learning and Game Theoretical methods to build vehicle cost model and explain the contribution of individual components to the vehicle cost.
- Extract component cost models at market level (includes direct and indirect costs).

### Advantage

- No need for expensive surveying and teardown data.
- No need for RPE<sup>(1)</sup> or ICM<sup>(2)</sup> adjustment (to mark up direct manufacturing costs to MSRP).
- Bypass the uncertainty involved in both steps.



### **APPROACH**

### For vehicle MSRP estimation

### Data Prep. and Analysis

Clean, integrate and feature engineer data



Vehicle "Make-Model Agnostic" Clustering



### **Predictive Model**



CatBoost

### 5 fold cross validated

| RMSE      | ~\$950 |  |  |  |
|-----------|--------|--|--|--|
| MAPE      | ~2.2%  |  |  |  |
| R²        | ~0.99  |  |  |  |
| Residuals | Normal |  |  |  |

### **Data Collection**

Automated web scraping process





Argonne Vehicle Attribute Database



60,000 vehicles (MY 1990-2020)

500+ different vehicle specs

Stored in non-relational structure mongoDB

### Prediction \$33,800 Weight = 2970\$500 Eng. Pwr. = 400\$1500 Turbo = Yes + \$800 Height = 54.7\$3000 + \$5000 Seats = Leather Base Vehicle \$30,000

### **Surrogate Explainer Model**

Additive feature attribution for local explanation i.e. on a per vehicle basis



Aggregate local explanations to extract global behavior (Vehicle & Component level price summaries) Curb. Wght Eng. Pwr Year **Behavioral** Front Seat Material Summary Veh. Width -10000SHAP value (impact on model output) 20000 25000 30000 35000 40000 Eng. Pwr Veh.Height **Decision** Front Seat Material Path Pwr. Dens. Veh. Volume (proxy) Eng. Size 20000 25000 30000 35000 Model output value 10000 5000 **Feature** 2500 **Dependence** Eng. Pwr SHAP interaction value for Curb. Wght and Heated seats 1000 Interactional **Effects** Curb. Wght

**Global Insights** 

10000

0.060 ഗ

¹ <sub>0.055</sub> Å

₹ <sub>0.050</sub> ₹

0.045

8000

For component level price estimation

### PROJECT RELEVANCE

- Given the collected data, predicting vehicle price using Machine Learning (ML) is a sensible method.
- We need a new approach to estimate individual technology costs and understand how technology changes affect vehicle costs.



### Contributions?

- Vehicle class
- Engine technology
- Fuel
- Transmission technology
- Tires
- Accessories
- •



Can we quantify each component contribution to vehicle price? Can we extract component level prices?

### **METHODOLOGY**

### Additive Feature Attribution

Several methods leverage this approach

Ribeiro et al. 2016 LIME **Shapley Values** Datta et al. 2016, Lundberg et al. 2019 Saabas Saabas 2014

Used is Coalitional or Cooperative game theory.

DeepLIFT Shrikumar et al. 2016



\$30,000 Average vehicle price, i.é. best price prediction if nothing is known about the vehicle

Holds certain fairness properties.

$$\phi_1$$
  $x_1$ : Turbo Engine = TRUE

\$46,170

 $\mathbb{E}[f(\mathbf{X})|\mathbf{do}(X_1=x_1)]$ 

$$=\sum_{S\subseteq\mathcal{M}\setminus\{i\}}\frac{|S|}{|S|}$$

$$\frac{|S|! (M - |S| - 1)!}{M!} [f_{x}(S \cup \{i\}) - f_{x}(S)]$$

Lloyd Shapley



Credit Attributed to component  $X_m$ 

$$\phi_2$$
RUE  $x_2$ : Curb. Weight = 4000 lbs.

 $\mathbb{E}[f(\mathbf{X})|\mathbf{do}(x_1,x_2,x_3)] \quad \phi_3$ 

f(x): Model prediction



 $\mathbb{E}[f(\mathbf{X})|\mathbf{do}(x_1,x_2)]$ 

# TECHNICAL ACCOMPLISHMENTS AND PROGRESS



# MSRP CAN NOW BE PREDICTED WITH CONTRIBUTIONS OF INDIVIDUAL ATTRIBUTES

Using AVERAGE vehicle within database

| year | vehicle     | make  | mode1 | trim                               | MSRP     | Predicted |
|------|-------------|-------|-------|------------------------------------|----------|-----------|
| 2019 | Honda Civic | honda | civic | LX 4dr Sedan<br>(2.0L 4cyl<br>CVT) | \$20,350 | \$20,717  |



Curb. Wght. = 2771 -7108.3Eng. Pwr. = 158 -3139.86 Prediction +1897.74 Year = 2019Veh. Height = 55.7Whl. Type = steel Eng. Size = 2Front Seat Material = cloth Veh. Width = 70.8Heated Seats = 0Nb. Cylinders = 4Veh. Length = 182.3Bluetooth = 1Drivetrain = front wheel drive Tire Width = 215Navigation = 0Cam Type = DOHC Trans. Type = continuously variable Turbo = 0Tire A.R = 55VVT = 1Nb. Seats = 5Eng. Type = SITrans. Nb. Gears = nan DI = 0Wheel Diam. = 16 Hypothetical Baseline Cyl. Deac. = 0(average vehicle) 20717 22000 24000 26000 28000 E[f(X)]Model output

f(x)

# MSRP CAN NOW BE PREDICTED WITH INDIVIDUAL ATTRIBUTES CONTRIBUTIONS

- Using SPECIFIC vehicle within database for one to one comparison. Example: study impact of trim
- Direct trim level comparison allows to better understand and quantify the components involved in the price difference.

| year | vehicle     | make  | model | trim         | MSRP     | Predicted |
|------|-------------|-------|-------|--------------|----------|-----------|
| 2019 | Honda Civic | honda | civic | LX 4dr Sedan | \$20,350 | \$20,717  |

| year | vehicle     | make  | model | trim              | MSRP     | Predicted |
|------|-------------|-------|-------|-------------------|----------|-----------|
| 2019 | Honda Civic | honda | civic | EX-L 4dr<br>Sedan | \$24,700 | \$25,368  |



### TECHNOLOGIES IMPACTING MSRP MOST CAN BE IDENTIFIED BY COMPARING DIFFERENT ATTRIBUTES FOR A SET OF VEHICLES

- Vehicles diverge in price as a result of component value differences. Slopes show magnitude of change in price.
- Allows us to better understand the effect of some key vehicle component on pricing



### TECHNOLOGIES IMPACTING MSRP MOST CAN BE IDENTIFIED BY **COMPARING DIFFERENT ATTRIBUTES FOR A GIVEN VEHICLE**

Example of Compact Car vs SUV class



# IMPACT OF INDIVIDUAL TECHNOLOGY ACROSS ALL VEHICLES

AGGREGATE LOCAL EXPLANATION: ENGINE POWER EXAMPLE



Each point is a vehicle. This form of relationship shows how a feature attribution changes as the feature value varies.

- 1. We can extract:
  - Marginal effect cost equations (right)
  - Combined effect cost equations (left: includes interactions)
- 2. Not restricted to simple linear relationships.
- 3. Not restricted to parametric equations.



### INDIVIDUAL TECHNOLOGY PRICE CAN BE ASSESSED

**EFFECT OF TIME ON COMPONENT PRICE: TURBOCHARGING EXAMPLE** 





### INDIVIDUAL TECHNOLOGY PRICE CAN BE ASSESSED

**EFFECT OF CLASS ON COMPONENT PRICE: TURBOCHARGING EXAMPLE** 



### REMAINING CHALLENGES AND BARRIERS

- Very large number of component technologies and attributes => Need to focus on the critical ones.
- Verify / complete / expand database (check all vehicle characteristics, add new model years, new vehicles...).
- Limited number of HEV, PHEV and BEV vehicles.
- Lack of component pricing data: need for cost expert validation.
- Need to quantify the uncertainty in estimated attributions (e.g. Confidence Intervals):
  - We have theoretical guarantees for fairness and optimality of split of cost attribution between components, but the uncertainty implicit in the method's outputs has not been addressed.



### POTENTIAL FUTURE RESEARCH

- Implement methodology into Autonomie/Amber framework for future VTO related benefits analysis efforts. Since Autonomie relies on manufacturing cost with constant RPE vs. MSRP contribution for ML analysis, tow methods could be considered:
  - 1. Equation Based
    - Preserve current Autonomie method and derive updated parametric equations or non parametric relationships for each component.
    - Implement independent component prices at the MSRP level (including direct and indirect costs).
  - 2. Shapley Based Credit/Penalty Component Pricing
    - Use the current predictive model to estimate vehicle price and then generate the (Shapley) attributional values to extract for each component a price contribution
    - A vehicle component price will dependent upon the presence of other components and their feature values. This approach is closest to what has been observed in the data.
    - No need for RPE or ICM adjustment.

### New analysis:

- Study \$/mile estimates at the vehicle technology and component levels.
- Explore tradeoffs between the introduction of more efficient vehicle technologies or more efficient component technologies—and the added price.
- Connect existing database with sales data to better understand vehicle level, technology level and component level \$/mile estimates and the technology's value to the customer.



### **SUMMARY**

- A new vehicle technology database was created with more than 500 individual vehicle attributes for each vehicle over the past 30 years.
- A predictive model with satisfactory accuracy was developed to estimate:
  - Vehicle MSRP
  - Individual component technology price contribution, their evolution over time and across vehicle classes
  - Individual market level component prices
- Potential future work will focus on
  - Integrating the methodology in Autonomie
  - Expanding the analysis use cases







### **Publications**

### Reports submitted to DOE

• A.Moawad, E.Islam, N.Kim, R.Vijayagopal, A.Rousseau, "Vehicle Manufacturer's Suggested Retail Price (MSRP) Estimation using Machine Learning".

### **Conferences & Journals**

 A.Moawad, E.Islam, N.Kim, R.Vijayagopal, A.Rousseau, W.Wu., "Explainable AI for a No-Teardown Vehicle Component Cost Estimation: A Top Down Approach" to appear.